CRYOGENICS – GAS LAW CALCULATION (REQUIRED FOR USE OF LIQUID NITROGEN IN EXPERIMENTS)

Worst-case Scenario in Oxygen depletion by liquid nitrogen spill: the entire contents of the Dewar or storage tank are lost to the room immediately after spilling (100% of the vessel contents).

Example Calculation:

 V_N = Total volume loss of Liq. N_2 (100%) = 1.0

 V_R = Total room volume (m³)

 V_D = Dewar or Vessel capacity (litres)

 F_G = Gas Factor for N_2 (683 for N_2)

0.21 = Normal concentration of O_2 in air (21%)

 V_{OX} = Total volume of O_2 in room (m³) = 0.21 x { $V_R - [(V_N \times V_D \times F_G)/1000]$ }

C_{OX} = Total concentration of O₂ remaining in room after 100% L. N₂ container spill = 100 x V_{OX}/V_R

For a room size 71m³, and a 100% Liq. N₂ spill of 41 litres:

The total vol. of O_2 in room = V_{OX} = 0.21 x {71 – [(1.0 x 41 x 683)/1000] } = 9.03 m³ Total conc. of O_2 remaining in room = C_{OX} = 100 x 9.03/71 = 12.71%

Requirements: In a worst-case scenario where all of the Liq. N_2 container spills, the total concentration of O_2 remaining in the room must be 20% or more. Otherwise the following is required:

- Room equipped with O₂ detector that sounds an alarm when the O₂ concentration falls below 20%
- Warning signs are displayed both on door to lab and next to L. N₂ dewar or dispenser
- Proper mechanical/non-mechanical ventilation must be installed within lab

Recommended alternative action: Reduce the size/volume of the Liq. N_2 dewar, to ensure that the O_2 concentration exceeds the minimum, and an oxygen-deficient atmosphere is avoided.

Your Calculation:

For a room size X m^3 , and a 100% Liq. N_2 spill of Y litres:

The total vol. of O₂ in room = V_{OX} = 0.21 x {**X** – [(1.0 x **Y** x 683)/1000] } = **Z** m³

Total conc. of O_2 remaining in room = C_{OX} = 100 x **Z/X** = ???? %